

ENHANCEMENTS TO THE GRID GENERATION SCRIPT LIBRARY AND POST-PROCESSING UTILITIES IN **CHIMERA GRID TOOLS**

William M. Chan

NASA Ames Research Center

9th Symposium on Overset Composite Grid and Solution Technology, State College, Pennsylvania, October 14-16, 2008

OVERVIEW

- Recent additions to the Chimera Grid Tools (CGT) script library for geometry and grid creation
- Enhancements to the hybrid mesh approach to surface loads integration on overset grids
- Introduction to OVERSMART (Solution Monitoring and Reporting Tool)

CGT SCRIPT LIBRARY: CYLINDER MACRO

Cylinders: specify 1 diameter

Same macro to create cylinder or frustum geometry and surface grids with various options for ends geometry

CreateCylGrids output surface grid filename \ iend (end geometry 1/2/3/4 1/2/3/4) \ icap (cap grid off/on 0/1) \ length \ diameters [list diam1 diam2] \ number_circumferential_points \ stretching ratio \ grid_spacings [list ds_global ds_corner ds_axis] \ centroid_coordinates [list xc yc zc] \ axis_vector [list xa ya za]

RECENT APPLICATIONS THAT USED THE CYLINDER MACRO: **Apollo Launch Escape System**

Surface triangulation for **CART3D** inviscid runs (intersecting cylinders)

Surface and volume grids for **OVERFLOW-2 viscous runs** (non-intersecting cylinders)

CGT SCRIPT LIBRARY: RECTANGULAR_PRISM MACRO AND RECENT APPLICATION

Generate geometry and surface grids for rectangular prism given bounding box coordinates and grid spacings (O-grid main body with end caps)

Recent application: Vehicle Assembly Building Interior

5

7

CGT SCRIPT LIBRARY: AIRFOIL COMPONENT MACRO

- Generate geometry and surface grids for airfoil components with 2 or more sections
- Essential component for rapid conceptual analysis of aerodynamic vehicles (wings, tails, pylons, fins, sails, etc.)

CreateAirfoilComponent number_of_sections \

name [list NACA NACA ...] \
series [list 0012 0012 ...] \
chord [list chord1 chord2 ...] \
span [list span1 span2 ...] \
le_sweep, dihedral, twist, ... \
various grid parameters, ... \
component_direction (x/y/z) \
output_grid_filename

SAMPLE GEOMETRIES AND GRIDS GENERATED WITH THE CYLINDER AND AIRFOIL_COMPONENT MACROS

LOADS COMPUTATION USING HYBRID MESH

Motivation

Accurate accounting of overlapped zones needed for loads integration

Approach

- Create hybrid mesh
- Integrate over non-overlapping quadrilaterals and triangles (mid-pt. rule)

Software: MIXSUR 1.* (NASA Ames, 1995)

GRID SYSTEMS OF THE PAST AND PRESENT

Mid 1990's: 5 - 10 grids, 5 - 10 million volume grid points

Today: 100+ grids, 100+ million volume grid points

PROS AND CONS OF HYBRID MESH AND WEIGHTED PANELS APPROACHES

Hybrid Mesh Pros

- Exact integration of linear functions
- Visual check of errors (hybrid mesh)

Hybrid Mesh Cons

- Not robust for large complex grid systems with wide mismatches in surface grid resolutions in overlapped zones
- May require input parameter iterations
- Execution speed (stencil search algorithm) scales with square of number of points on each surface subset

Weighted Panels Pros

- Always returns an answer
- No input parameter iterations required
- Fast relative to MIXSUR 1.*

Weighted Panels Cons

- Can only exactly integrate a constant function (accuracy is unclear beyond that)
- Difficult to assess error (absence of visual check like a hybrid mesh)

LOADS COMPUTATION USING WEIGHTED PANELS

 $\mathbf{W}_2 = (\mathbf{A}_{\mathsf{Q}} \mathbf{-} \mathbf{A}_{\mathsf{OV}}) / \mathbf{A}_{\mathsf{Q}}$

A_Q = Area of quadrilateral A_{OV} = Area of overlap

Approach

9

11

- Integrate over all quadrilaterals with weights 0 <= W_i <= 1 for contribution from each quadrilateral (mid-pt. rule)
- Weights determined by polygon clipping and boolean subtraction

Software: POLYMIXSUR (Boeing, 2004), USURP (Penn State, 2005)

ONE-DIMENSIONAL LOCAL ERROR ESTIMATE ON OVERLAPPING CELLS

Functions to be integrated

 $f(x) = -(p - p_{inf})$ pressure terms

 $f(x) = \tau_{ii} n_i$ viscous terms

 ε = size of overlap with $0<\varepsilon<\delta$

Integrate from $x=\alpha$ to $x=\alpha+2\delta-\epsilon$

Functional values known at node points

16

ONE-DIMENSIONAL LOCAL ERROR ESTIMATE FOR HYBRID APPROACH

Exact integral = shaded area

Hybrid approach integral computed using mid-point rule on entire left cell and trimmed right cell = exact integral for linear function

Local error for hybrid approach = 0 exactly

15

13

MIXSUR VERSION 2.0

- Complete rewrite of MIXSUR using Fortran 90 with advanced data structures and dynamic memory allocation (version 2.0)
- New search algorithm to significantly reduce execution time
- New zipper grid (triangulation) algorithm to improve robustness
- Triangle vertex ordering (surface normal) determined by logical rather than floating-point test
- For each surface and component, report

A_a = surface area occupied by quadrilaterals

A_t = surface area occupied by triangles

 a_{α} = fraction of total area occupied by quadrilaterals

a = fraction of total area occupied by triangles

ONE-DIMENSIONAL LOCAL ERROR ESTIMATE FOR WEIGHTED PANELS APPROACH

Let normalized overlap $\theta = \varepsilon/\delta = \text{constant with } 0 < \theta < 1$

Weighted panels integral error = I_{WP} – exact analytic integral = $(-a/2) \theta(1-\theta)\delta^2$

- Magnitude of local error for weighted panels approach is
 - always > 0 for non-constant function
 - proportional to the local slope of the function
 - proportional to square of local cell size

HYBRID MESH CREATION PROCEDURE

1. Removal of quadrilateral cell overlap by blanking more vertices

Vertex blanking from domain connectivity

Vertex blanking from overlap removal

Tasks

- For each vertex on each subset, search for donor stencil from neighboring subset, and mark vertices with donor stencils
- Between any pair of overlapping subsets, blank vertices from one subset or the other

NEW STENCIL SEARCH ALGORITHM

- Use surface subset bounding box as first filter
- Break each surface subset into smaller patches in index space
- Each patch has no more than N points in J and K directions
- Construct bounding box around each patch
- Given target point, identify patch bounding boxes that contain the point
- Do closest point test on small number of patches followed by stencil walk to get final stencil

HYBRID MESH CREATION PROCEDURE 2. Creation of gap boundary strings

Tasks:

- Identify vertices and edges on gap boundaries
- Connect edges to form strings

STRING VERTEX MAP

For each vertex on each boundary string, determine and store

- 1. String ID of closest string
- 2. Vertex ID on closest string

SUB-STRING SPLITTING

1. At vertex where neighboring string ID switches from one to another on vertex map

SUB-STRING SPLITTING

SUB-STRING SPLITTING

3. At vertex where angle deviation between local surface normals on each side exceeds specified threshold

23

21

HYBRID MESH CREATION PROCEDURE

3. Identify matching pairs of sub-strings and fill gap with triangles

3.1 Self zipping on each sub-string

HYBRID MESH CREATION PROCEDURE

3. Identify matching pairs of sub-strings and fill gap with triangles 3.2 Cross zipping between matching pairs of sub-strings

HYBRID MESH CREATION PROCEDURE 3. Identify matching pairs of sub-strings and fill gap with triangles 3.3 Zipping of remaining polygonal gaps

ORDERING OF TRIANGLE VERTICES

- Each triangle has one edge that is shared with an existing quadrilateral of the original structured surface mesh
- Use directed edge of quadrilateral to determine ordering of vertices in triangle

SUMMARY

- Weighted panels method has a non-zero local error that scales with the local slope and the square of the grid spacing
- Use of index-space based bounding boxes for stencil searches leads to a ~40x speed up
- Robustness improved with sub-string splitting and triangle vertex ordering based on quadrilateral directed edge (~2x to ~10x speed up)
- Total speed up is about 80x to 400x

FURTHER ON-GOING WORK

- More robust treatment of sub-string matching from two grids with unmatched geometric features
- Implementation of cross-over test between triangles and quadrilaterals
- More code testing on complex configurations: Space Shuttle
- Output of loads contribution from quadrilaterals and triangles separately

SOLUTION MONITORING AND REPORTING TOOL (OVERSMART)

- Executive summary view of histories of
- flow variables residuals
- turbulence model variables residuals
- component forces and moments

for large number of grids and components

- Needed for fast and automatic assessment of solution convergence for steady state cases and unsteady behavior for time accurate cases
- Current status: command line, post-processing mode (see David Kao's talk for details)
- Work in progress: GUI and dynamic monitoring modes